Prime rings satisfying a generalized polynomial identity
نویسندگان
چکیده
منابع مشابه
Group rings satisfying generalized Engel conditions
Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1) y]=[[x ,_( n) y] , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y) ,_( n(x,y)) y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group an...
متن کاملGeneralized Derivations of Prime Rings
Let R be an associative prime ring, U a Lie ideal such that u2 ∈ U for all u ∈ U . An additive function F : R→ R is called a generalized derivation if there exists a derivation d : R→ R such that F(xy)= F(x)y + xd(y) holds for all x, y ∈ R. In this paper, we prove that d = 0 or U ⊆ Z(R) if any one of the following conditions holds: (1) d(x) ◦F(y)= 0, (2) [d(x),F(y) = 0], (3) either d(x) ◦ F(y) ...
متن کاملAssociated Prime Ideals of Skew Polynomial Rings
In this paper, it has been proved that for a Noetherian ring R and an automorphism σ of R, an associated prime ideal of R[x, σ] or R[x, x−1, σ] is the extension of its contraction to R and this contraction is the intersection of the orbit under σ of some associated prime ideal of R. The same statement is true for minimal prime ideals also. It has also been proved that for a Noetherian Q-algebra...
متن کاملPrime Decompositions of Radicals in Polynomial Rings
In the last twenty years several methods for computing primary decompositions of ideals in multivariate polynomial rings over fields (Seidenberg (1974), Lazard (1985), Kredel (1987), Eisenbud et al. (1992)), the integers (Seidenberg, 1978), factorially closed principal ideal domains (Ayoub (1982), Gianni et al. (1988)) and more general rings (Seidenberg, 1984) have been proposed. A related prob...
متن کاملPrime Radicals of Skew Laurent Polynomial Rings
Let R be a ring with an automorphism σ. An ideal I of R is σ-ideal of R if σ(I) = I. A proper ideal P of R is σ-prime ideal of R if P is a σ-ideal of R and for σ-ideals I and J of R, IJ ⊆ P implies that I ⊆ P or J ⊆ P . A proper ideal Q of R is σ-semiprime ideal of Q if Q is a σ-ideal and for a σ-ideal I of R, I2 ⊆ Q implies that I ⊆ Q. The σ-prime radical is defined by the intersection of all ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1969
ISSN: 0021-8693
DOI: 10.1016/0021-8693(69)90029-5